Vito Quaranta, M.D.


Visit Lab Site

Faculty Appointments
Professor of Cancer Biology
M.D., Medicine, University of Bari, Bari
Office Address
771 PRB
2220 Pierce Avenue
Nashville, TN 37232
Research Description
Cancer Systems Biology is the definition of our mixed experimental and theoretical approach to studying many aspects of cancer progression, including invasion, metastasis, resistance to drugs, effects of mutations. Rather than focusing on clarifying details of a molecular or genetic pathway, or specific effects of growth or differentiation factors or proteases or drugs, we try and combine these details into a global picture that specifies overall trends in growth and progression of specific cancer cells under distinct microenvironmental conditions. Thus, we build quantitative hypotheses that translate experimental observations or datasets into computer simulations based of several mathematical modeling techniques, including ordinary or partial differential equations, cellular automata, neural networks, immersed boundary method. To test the hypotheses, we populate these models with datasets from in vitro or animal experiments, or from clinical material. The simulations make theoretical predictions on specific ways experimental variables may affect cancer progression. We then design and perform experiments to validate these predictions, and the outcome of the experimentation is used to evaluate the realism of computer simulations and possibly modify their underlying mathematics. Our group is comprised of an interdisciplinary collection of scientists, including cell and molecular biologists, mathematicians, engineers, bioengineers, bioinformaticians and computational biologists. We thrive on continued personal exchange and looking at cancer research problems through the eyes of different disciplines.

My background is in cancer cell biology, and since 2004 I have gradually transitioned my interests to Cancer Systems Biology. Before my systems biology time, my main interest was discovery of molecular mechanisms whereby integrins and extracellular matrix, especially laminins, modify the microenvironment of cancer cells and affect their behavior. My laboratory has made several contributions on integrin structure/function, and on cancer cell motility onto matrix digested by proteases. These cancer microenvironment studies motivated me to seek approaches that evaluate simultaneously the many variables affecting cancer cell functional phenotypes. Computer and mathematical modeling was an obvious avenue to pursue, and I have been fortunate to encounter brilliant mathematicians with whom I have established productive and exciting collaborations. Through these, I entertain connections with a large world-wide community of systems biologists and mathematical modelers. Our Center for Cancer Systems Biology at Vanderbilt is part of an NCI-funded Integrative Cancer Biology Program that links 12 Centers nationwide with biannual meetings. My group has diversified to include an interdisciplinary collection of cell and molecular biologists, mathematicians, engineers, bioengineers, bioinformaticians and computational biologists. In my group we specialize in connecting cell functional phenotypes with underlying molecular networks, using cell-based modeling techniques resulting in models that can accept large cellular datasets. Vice versa, we insist on establishing in advance that simulation outputs and predictions of computer models we build and study can in fact be validated experimentally. We also investigate noise and robustness in signaling, as it may become modified in cancer progression or in response to stress, drugs (e.g., molecular therapeutics) and microenvironmental perturbations. The goal of our systems approach is to build fundamental knowledge of cancer as a complex process, and seek short-term translational applications of this knowledge. The latter goal is most relevant to rational deployment of targeted therapeutics, one of the most exciting development for cancer treatment in decades. With respect to this goal, my group interacts productively with oncologists (both clinical and surgica
Research Keywords
Cancer Systems Biology; Cell Adhesion and Migration
Hassanein M, Weidow B, Koehler E, Bakane N, Garbett S, Shyr Y, Quaranta V. Development of high-throughput quantitative assays for glucose uptake in cancer cell lines. Mol Imaging Biol. 2011 Oct; 13(5): 840-52. PMID: 20809209, PMCID: PMC3627351, DOI: 10.1007/s11307-010-0399-5, ISSN: 1860-2002.

Xu J, Xie J, Jourquin J, Colvin DC, Does MD, Quaranta V, Gore JC. Influence of cell cycle phase on apparent diffusion coefficient in synchronized cells detected using temporal diffusion spectroscopy. Magn Reson Med [print-electronic]. 2011 Apr; 65(4): 920-6. PMID: 21413058, PMCID: PMC3433804, DOI: 10.1002/mrm.22704, ISSN: 1522-2594.

Tripathi M, Potdar AA, Yamashita H, Weidow B, Cummings PT, Kirchhofer D, Quaranta V. Laminin-332 cleavage by matriptase alters motility parameters of prostate cancer cells. Prostate. 2011 Feb 2/1/2011; 71(2): 184-96. PMID: 20672321, PMCID: PMC3669684, DOI: 10.1002/pros.21233, ISSN: 1097-0045.

Ocak S, Yamashita H, Udyavar AR, Miller AN, Gonzalez AL, Zou Y, Jiang A, Yi Y, Shyr Y, Estrada L, Quaranta V, Massion PP. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway. Oncogene [print-electronic]. 2010 Dec 12/2/2010; 29(48): 6331-42. PMID: 20802517, PMCID: PMC4637980, PII: onc2010362, DOI: 10.1038/onc.2010.362, ISSN: 1476-5594.

Riggins KS, Mernaugh G, Su Y, Quaranta V, Koshikawa N, Seiki M, Pozzi A, Zent R. MT1-MMP-mediated basement membrane remodeling modulates renal development. Exp. Cell Res [print-electronic]. 2010 Oct 10/15/2010; 316(17): 2993-3005. PMID: 20727881, PMCID: PMC2945451, PII: S0014-4827(10)00397-6, DOI: 10.1016/j.yexcr.2010.08.003, ISSN: 1090-2422.

Gruver JS, Potdar AA, Jeon J, Sai J, Anderson B, Webb D, Richmond A, Quaranta V, Cummings PT, Chung CY. Bimodal analysis reveals a general scaling law governing nondirected and chemotactic cell motility. Biophys. J. 2010 Jul 7/21/2010; 99(2): 367-76. PMID: 20643054, PMCID: PMC2905119, PII: S0006-3495(10)00710-1, DOI: 10.1016/j.bpj.2010.03.073, ISSN: 1542-0086.

Yamashita H, Tripathi M, Harris MP, Liu S, Weidow B, Zent R, Quaranta V. The role of a recombinant fragment of laminin-332 in integrin alpha3beta1-dependent cell binding, spreading and migration. Biomaterials [print-electronic]. 2010 Jul; 31(19): 5110-21. PMID: 20347131, PMCID: PMC2861493, PII: S0142-9612(10)00343-1, DOI: 10.1016/j.biomaterials.2010.03.003, ISSN: 1878-5905.

Yamashita H, Shang M, Tripathi M, Jourquin J, Georgescu W, Liu S, Weidow B, Quaranta V. Epitope mapping of function-blocking monoclonal antibody CM6 suggests a "weak" integrin binding site on the laminin-332 LG2 domain. J. Cell. Physiol. 2010 Jun; 223(3): 541-8. PMID: 20301201, PMCID: PMC2874318, DOI: 10.1002/jcp.22107, ISSN: 1097-4652.

Quaranta V, Garbett SP. Not all noise is waste. Nat. Methods. 2010 Apr; 7(4): 269-72. PMID: 20354516, PII: nmeth0410-269, DOI: 10.1038/nmeth0410-269, ISSN: 1548-7105.

Liu S, Yamashita H, Weidow B, Weaver AM, Quaranta V. Laminin-332-beta1 integrin interactions negatively regulate invadopodia. J. Cell. Physiol. 2010 Apr; 223(1): 134-42. PMID: 20039268, PMCID: PMC3150482, DOI: 10.1002/jcp.22018, ISSN: 1097-4652.

Jeon J, Quaranta V, Cummings PT. An off-lattice hybrid discrete-continuum model of tumor growth and invasion. Biophys. J. 2010 Jan 1/6/2010; 98(1): 37-47. PMID: 20074513, PMCID: PMC2800960, PII: S0006-3495(09)01573-2, DOI: 10.1016/j.bpj.2009.10.002, ISSN: 1542-0086.

Potdar AA, Jeon J, Weaver AM, Quaranta V, Cummings PT. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLoS ONE. 2010; 5(3): e9636. PMID: 20224792, PMCID: PMC2835765, DOI: 10.1371/journal.pone.0009636, ISSN: 1932-6203.

Yamashita H, Tripathi M, Jourquin J, Kam Y, Liu S, Weidow B, Quaranta V. Lysophosphatidic Acid Upregulates Laminin-332 Expression during A431 Cell Colony Dispersal. J Oncol [print-electronic]. 2010; 2010: PMID: 20862207, PMCID: PMC2938436, DOI: 10.1155/2010/107075, ISSN: 1687-8469.

Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol [print-electronic]. 2009 Oct; 28(8): 445-55. PMID: 19686849, PMCID: PMC2875997, PII: S0945-053X(09)00103-6, DOI: 10.1016/j.matbio.2009.07.008, ISSN: 1569-1802.

Hinow P, Gerlee P, McCawley LJ, Quaranta V, Ciobanu M, Wang S, Graham JM, Ayati BP, Claridge J, Swanson KR, Loveless M, Anderson AR. A spatial model of tumor-host interaction: application of chemotherapy. Math Biosci Eng. 2009 Jul; 6(3): 521-46. PMID: 19566124, PMCID: PMC2981353, ISSN: 1547-1063.

Guess CM, Lafleur BJ, Weidow BL, Quaranta V. A decreased ratio of laminin-332 beta3 to gamma2 subunit mRNA is associated with poor prognosis in colon cancer. Cancer Epidemiol. Biomarkers Prev [print-electronic]. 2009 May; 18(5): 1584-90. PMID: 19383890, PMCID: PMC2869450, PII: 1055-9965.EPI-08-1027, DOI: 10.1158/1055-9965.EPI-08-1027, ISSN: 1055-9965.

Anderson AR, Rejniak KA, Gerlee P, Quaranta V. Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol [print-electronic]. 2009 Apr; 58(4-5): 579-624. PMID: 18839176, DOI: 10.1007/s00285-008-0210-2, ISSN: 0303-6812.

Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL. Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res. 2009 Jan 1/15/2009; 69(2): 475-82. PMID: 19147560, PMCID: PMC2629389, PII: 69/2/475, DOI: 10.1158/0008-5472.CAN-08-2649, ISSN: 1538-7445.

Kam Y, Quaranta V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PLoS ONE [print-electronic]. 2009; 4(2): e4580. PMID: 19238201, PMCID: PMC2640460, DOI: 10.1371/journal.pone.0004580, ISSN: 1932-6203.

Quaranta V, Tyson DR, Garbett SP, Weidow B, Harris MP, Georgescu W. Trait variability of cancer cells quantified by high-content automated microscopy of single cells. Meth. Enzymol. 2009; 467: 23-57. PMID: 19897088, PMCID: PMC2915824, PII: S0076-6879(09)67002-6, DOI: 10.1016/S0076-6879(09)67002-6, ISSN: 1557-7988.

Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta V. Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J. Biol. Chem [print-electronic]. 2008 Nov 11/7/2008; 283(45): 30576-84. PMID: 18784072, PMCID: PMC2576550, PII: M802312200, DOI: 10.1074/jbc.M802312200, ISSN: 0021-9258.

Quaranta V, Rejniak KA, Gerlee P, Anderson AR. Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. Semin. Cancer Biol [print-electronic]. 2008 Oct; 18(5): 338-48. PMID: 18524624, PMCID: PMC3789515, PII: S1044-579X(08)00039-4, DOI: 10.1016/j.semcancer.2008.03.018, ISSN: 1096-3650.

Harris MP, Kim E, Weidow B, Wikswo JP, Quaranta V. Migration of isogenic cell lines quantified by dynamic multivariate analysis of single-cell motility. Cell Adh Migr. 2008 Apr; 2(2): 127-36. PMID: 19271355, PMCID: PMC2634586, ISSN: 1933-6926.

Anderson AR, Quaranta V. Integrative mathematical oncology. Nat. Rev. Cancer. 2008 Mar; 8(3): 227-34. PMID: 18273038, PII: nrc2329, DOI: 10.1038/nrc2329, ISSN: 1474-1768.

Georgescu W, Jourquin J, Estrada L, Anderson AR, Quaranta V, Wikswo JP. Model-controlled hydrodynamic focusing to generate multiple overlapping gradients of surface-immobilized proteins in microfluidic devices. Lab Chip [print-electronic]. 2008 Feb; 8(2): 238-44. PMID: 18231661, PMCID: PMC4357342, DOI: 10.1039/b716203k, ISSN: 1473-0197.

Kam Y, Guess C, Estrada L, Weidow B, Quaranta V. A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer. 2008; 8: 198. PMID: 18625060, PMCID: PMC2491634, PII: 1471-2407-8-198, DOI: 10.1186/1471-2407-8-198, ISSN: 1471-2407.

Hu G, Quaranta V, Li D. Modeling of effects of nutrient gradients on cell proliferation in microfluidic bioreactor. Biotechnol. Prog [print-electronic]. 2007 Nov; 23(6): 1347-54. PMID: 17935347, DOI: 10.1021/bp070234n, ISSN: 8756-7938.

Anderson AR, Weaver AM, Cummings PT, Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell. 2006 Dec 12/1/2006; 127(5): 905-15. PMID: 17129778, PII: S0092-8674(06)01348-1, DOI: 10.1016/j.cell.2006.09.042, ISSN: 0092-8674.

Jourquin J, Yang N, Kam Y, Guess C, Quaranta V. Dispersal of epithelial cancer cell colonies by lysophosphatidic acid (LPA). J. Cell. Physiol. 2006 Feb; 206(2): 337-46. PMID: 16110477, DOI: 10.1002/jcp.20470, ISSN: 0021-9541.

Quaranta V, Weaver AM, Cummings PT, Anderson AR. Mathematical modeling of cancer: the future of prognosis and treatment. Clin. Chim. Acta. 2005 Jul 7/24/2005; 357(2): 173-9. PMID: 15907826, PII: S0009-8981(05)00194-4, DOI: 10.1016/j.cccn.2005.03.023, ISSN: 0009-8981.

Hintermann E, Yang N, O'Sullivan D, Higgins JM, Quaranta V. Integrin alpha6beta4-erbB2 complex inhibits haptotaxis by up-regulating E-cadherin cell-cell junctions in keratinocytes. J. Biol. Chem [print-electronic]. 2005 Mar 3/4/2005; 280(9): 8004-15. PMID: 15579904, PII: M406301200, DOI: 10.1074/jbc.M406301200, ISSN: 0021-9258.

Hintermann E, Quaranta V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol. 2004 May; 23(2): 75-85. PMID: 15246107, PII: S0945053X04000289, DOI: 10.1016/j.matbio.2004.03.001, ISSN: 0945-053X.

Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knöfler M, Andreae F, Wagner O, Quaranta V, Desoye G. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J. Cell. Sci. 2004 Mar 3/15/2004; 117(Pt 8): 1319-28. PMID: 15020672, PII: 117/8/1319, DOI: 10.1242/jcs.00971, ISSN: 0021-9533.

Wang, H., Fu, W., Im, J.H., Zhou, Z., Santoro, S.A., Iyer, V., Dipersio, C.M., Yu, Q.C., Quaranta, V.. Tumor cell alpha3beta 1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol. 2004; 164: 935-41.

Schenk S, Quaranta V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 2003 Jul; 13(7): 366-75. PMID: 12837607, PII: S0962892403001296, ISSN: 0962-8924.

Hendrix MJ, Seftor EA, Kirschmann DA, Quaranta V, Seftor RE. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann. N. Y. Acad. Sci. 2003 May; 995: 151-61. PMID: 12814947, ISSN: 0077-8923.

Pirilä E, Sharabi A, Salo T, Quaranta V, Tu H, Heljasvaara R, Koshikawa N, Sorsa T, Maisi P. Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration. Biochem. Biophys. Res. Commun. 2003 Apr 4/18/2003; 303(4): 1012-7. PMID: 12684035, PII: S0006291X03004522, ISSN: 0006-291X.

Schenk S, Hintermann E, Bilban M, Koshikawa N, Hojilla C, Khokha R, Quaranta V. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 2003 Apr 4/14/2003; 161(1): 197-209. PMID: 12695504, PMCID: PMC2172889, PII: jcb.200208145, DOI: 10.1083/jcb.200208145, ISSN: 0021-9525.

Gao C, Mao S, Ronca F, Zhuang S, Quaranta V, Wirsching P, Janda KD. De novo identification of tumor-specific internalizing human antibody-receptor pairs by phage-display methods. J. Immunol. Methods. 2003 Mar 3/1/2003; 274(1-2): 185-97. PMID: 12609544, PII: S0022175902005227, ISSN: 0022-1759.

Quaranta, V., Giannelli, G.. Cancer invasion:watch your neighbourhood. Tumori. 2003; 89: 343-8.

Schenk, S., Quaranta, V.. Tales from the crypt [ic] sites of the extracellular matrix. Trends Cell Biol. 2003; 13: 366-75.

Quaranta V. Motility cues in the tumor microenvironment. Differentiation. 2002 Dec; 70(9-10): 590-8. PMID: 12492500, PII: S0301-4681(09)60468-0, DOI: 10.1046/j.1432-0436.2002.700912.x, ISSN: 0301-4681.

Hintermann E, Haake SK, Christen U, Sharabi A, Quaranta V. Discrete proteolysis of focal contact and adherens junction components in Porphyromonas gingivalis-infected oral keratinocytes: a strategy for cell adhesion and migration disabling. Infect. Immun. 2002 Oct; 70(10): 5846-56. PMID: 12228316, PMCID: PMC128337, ISSN: 0019-9567.

Quaranta, V. Motility cues in the tumor microenvironment. Differentiation. 2002; 590-8.

Hintermann E, Bilban M, Sharabi A, Quaranta V. Inhibitory role of alpha 6 beta 4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha 3 beta 1 integrin. J. Cell Biol. 2001 Apr 4/30/2001; 153(3): 465-78. PMID: 11331299, PMCID: PMC2190561, ISSN: 0021-9525.

Giannelli, G., Bergamini, C., Fransvea, E., Marinosci, F., Quaranta, V., and Antonaci, S.. Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest. 2001; 81: 613-27.

Hintermann, E., Bilban, M., Sharabi, A., and Quaranta, V.. Inhibitory role of alpha6beta 4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha3beta1 integrin. J Cell Biol. 2001; 153: 465-75.

Kiosses, W.B., Hahn, K.M., Giannelli, G., and Quaranta, V.. Characterization of morphological and cytoskeletal changes in MCF10A breast epithelial cells plated on laminin-5: comparison with breast cancer cell line MCF7. Cell Adhes Commun. 2001; 8: 29-44.

Seftor, R.E., Seftor, E.A., Koshikawa, N., Meltzer, P.S., Gardner, L.M., Bilban, M., Stetler-Stevenson, W.G., Quaranta, V., and Hendrix, M.J.. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res. 2001; 61: 6322-7.

Shang, M., Koshikawa, N., Schenk, S., and Quaranta, V.. The LG3 module of laminin-5 harbors a binding site for integrin alpha3beta1 that promotes cell adhesion, spreading, and migration. J Biol Chem. 2001; 276: 33045-53.

Zent, R., Bush, K.T., Pohl, M.L., Quaranta, V., Koshikawa, N., Wang, Z., Kreidberg, J.A., Sakurai, H., Stuart, R.O., and Nigam, S.K.. Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Dev Biol. 2001; 238: 289-302.

Quaranta, V.. Cell migration through extracellular matrix; membrane-type metalloproteinases make the way. J Cell Biol. 2000; ((149)): 1167-79.

Plopper,G.E., Huff, J.L., Rust, W.L., Schwartz, M.A.,Quaranta, V.. Antibody-induced activation of betal integrin receptors stimulates cAMP-dependent migration of breast cells on laminin-5. Mol. Cell Biol Res Commun. 2000; 4: 129-35.

Mullen, L.M., Richards, D.W., Quaranta, V.. Evidence that laminin-5 is a component of the tooth surface internal basal lamina, supporting epithelial cell adhesion. J. Periodontal Res. 1999; 34: 16-24.

Falk-Marzillier, J., Domanico, S.Z., Pelletier, A, Mullen, L., Quaranta, V.. Characterization of a tight molecular complex between integrin alpha6beta4 and laminin-5 extracellular matrix. Biochem Biophys Res Commun. 1998; 251: 49-55.

Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W.G., Quaranta, V.. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997; 277: 225-8.

Quaranta, V., Plopper, G.E.. Integrins and laminins in tissue remodeling. Kidney Int. 1997; 51: 1441-6.

Baker, S.E., Hopkinson, S.B., Fitchmun, M., Andreason, G.L., Frasier, F., Plopper, G., Quaranta, V., Jones, J.C.. Laminin-5 and hemidesmosomes: role of the alpha3 chain subunit in hemidesmosome stability and assembly. J Cell Sci. 1996; 109: 2509-20.

Baker, S.E., Hopkinson, S.B., Fitchmun, M., Andereason, G.L., Frasier, F., Plopper, G., Quaranta, V., Jones, J.C.. Laminin-5 and hemidesmosomes: role of the alpha3 chain subunit in hemidesmosome stability and assembly. J Cell Sci. 1996; 2509-20.

Baker, S.E., DiPasquale, A.P., Stock, E.L., Quaranta, V., Fitchmum, M., Jones, J.C.. Morphogenetic effects of soluble laminin-5 on cultured epithelial cells and tissue explants. Exp. Cell Res. 1996; 228: 262-70.

Plopper, G., Falker-Marzillier, J., Glaser, S., Fitchmum, M., Giannelli, G., Romano, T., Jones, J.C., Quaranta, V.. Changes in expression of monoclonal antibody epitopes on laminin-5r induced by cell contact. J Cell Sci. 1996.

Hormia, M., Falk-Marzillier, J., Plopper, G. Tamura, R.N., Jones, J.C., Quaranta, V.. Rapid spreading and mature hemidesmosome formation in HaCaT Keratinocytes induced by incubation with soluble laminin-5r. J Invest Dermatol. 1995; 557-61.

Gaietta, G., Redelmeier, T.E., Jackson, M.R., Tamura, R.N. Quaranta, V.. Quantitative measurment of alpha6beta 1 and alpha6beta 4 integrin internalization under cross-linking conditions: a possible role for alpha6 cytoplasmic domains. J Cell Sci. 1994; 107: 3339-49.

Quaranta, V.,Tamura, R.N. Collo, G., Cooper, H.M., Hormia, M., Rozzo, C. Gaietta, G., Starr, L.. Distinctive functions of alpha6beta4 and other integrins in epithelial cells. Intergrins. 1994; 141-61.

Quaranta, V., Collo, G., Rozzo, C., Starr, L., Gaietta, G., Tamura, R.N.. The integrin alpha6beta4 in epithelial and carcinoma cells. The Integrins. 1994; 147-76.

Collo, G., Starr, L., Quaranta, V.. A new isoform of the laminin receptor integrin alpha 7 beta 1 is developmentally regulated in skeletal muscle. J. Biol. Chem. 1993; 268: 19019-24.

Quaranta, V.. Integrin expression and epithelial cell differentiation. I. Cell Adhesion Molecules. 1993; 13-27.

Hormia, M., Virtanen, I., Quaranta, V.. Immunolocalization of intergrin alpha 6 beta 4 in mouse junctional epithelium suggests an anchoring function to both the internal and the external basal lamina. J Dent Res. 1992; 71: 1503-8.

Quaranta, V., Jones, J.C.. The internal affairs of an integrin. Trends in Cell Biology. 1991; 1: 2-4.

Tamura, R.N., Cooper, H.M., Collo, G., Quaranta, V.. Cell type-specific integrin variants with alternative alpha chain cytoplasmic domains. Proc Natl. Acad. Sci US. 1991; A 88: 10183-7.

Available Postdoctoral Position Details
Post-doctoral positions available immediately for individuals with background in any of the following: computational biology, mathematical modeling, biostatistics, biological engineering, high-level computational microscopy, biological software development, systems biology. Join an energetic and exciting multidisciplinary team of experimentalists and theoreticians to study Cancer Systems Biology.